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Introduction

® Deep Learning for Climate Data
® Deep Learning:
® Capture the non-linear, underline pattern in massive scaled Data
® Successful in computer vision, NLP
® Pattern Analysis for massive scaled Climate Data:
® Climate Object Detection = object detection in Vision
® Time series analysis (tracking, forecast) = language translation in NLP
Deep Learning for ESGF
® Only way to analyze Peta-scaled data in ESGF
® Save human effort and computing power for data analysis
® Distribute labeled dataset for climate informatics community
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1. Detection and Localization
(1) Motivation
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Numerical weather
prediction is
an "Expensive” process!

® Let CNNs learn feature
representation of
extreme climate events
in GCM outputs
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* 256 million grid points
« Data-Driven Approach?

® Ultimately save
computing cost for

Numerical Weather

Predictions




1. Detection and Localization

(2) Model

Detection Localization
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(1) Detection and Localization
(3) Results

Detection Localization
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Almost 100 % test accuracy for detection Regression error (L2 loss) is
/ ~ 4 degrees (about 450 km)

Soo Kyung Kim, Sasha Ames, Jiwoo Lee, Chengzhu Zhang,Aaron C.Wilson and Dean Williams " Massive Scale Deep
Learning For Detecting Extreme Climate Events"Climate Informatics (2017): NCAR/TN536+PROC
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(2) Increase localization accuracy

using Pixel Recursive Super Resolution
(1) Model
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ohammad Norouzi, and Jonathon Shlens. "Pixel recursive super resolution." arXiv preprint arXiv:1702.00783 (2017)
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(2) Results

Low Resolution Image

Super Resolution Image
(Generated)

Earth System Grid Federation

2. Increase localization accuracy
using Pixel Recursive Super Resolution

High Resolution Image
(Ground Truth)

Kim, Sasha Ames, Jiwoo Lee, Chengzhu Zhang, Aaron C. Wilson and Dean Williams "Framework for Detection and Localization of
E F@ imate Event with Pixel Recursive Super Resolution." DMESS, (2017). Seventh Workshop Data Mining on Earth System Science.



3. Tracking Extreme Climate Events

(1) Model

Input : age sequence X={x, X, X, __ X3, Output: Following trajectory started withY
ectory status sequence S={s, s,s. s, . YarYar =Y S
ial positionY, (i.e: (a,b,) ) (i.e:(a,b,), (a,b,), (a;b,)...... (ayby) )
a’ b11 341, b41 «— y4=s4>‘<|4 = (0,0)

Ya status s is given

Loss =mse(y — y)
=mse(y — [ *s)
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3. Tracking Extreme Climate Events

(2) Results

ground truth), Red (prediction from model)

im, Ankur Mahesh, Samira Kahou, Karthik Kashinath, Dean Williams, Vincent Michalski, Travis
egmenting and Tracking Extreme Climate Events using Neural Networks” DLPS on NIPS, 2017
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Future Works

® Software Capability
® Build Machine Learning Infrastructure, API
® Research

® Deep learning emulator for physical parameterization

® Time series analysis and prediction: tracking and forecasting
climate events, precursor analysis for climate events

® Dataset
® ClimateNet: Publication of labeled dataset through ESGF

® Promote deep learning research for Climate Science.
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